Similarity Of ‘Functional Groups’ Of Drug Molecules And Pathogenic Molecules Determines ‘Similimum”

To understand the real science behind the phenomena of ‘similia similibus curentur’, ‘drug proving’ and ‘potntization’, we should study drug substances in terms of not only their ‘constituent molecules’, but in terms of ‘functional groups’ and ‘moieties’ of those drug molecules. A drug substance is composed of diverse types of drug molecules. A drug molecule interacts with ‘active groups’ of biological target molecules such as enzymes and receptors using their ‘functional groups’ or ‘moieties’. It is the ‘functional groups’ and ‘moieties’ on the individual drug molecules that decide to which biological molecules they can bind to and produce molecular inhibitions. Different drug molecules with different size and structures, but having same ‘functional group’ or ‘moiety’ can bind to same biological molecules and produce similar molecular errors and similar groups of symptoms. A drug molecule become similimum to a disease when the drug molecule and disease-producing molecule have same functional groups, so that they could bind to same biological targets producing same molecular errors and same symptom groups.

Drug molecules act upon the biological molecules in the organism by binding their ‘functional groups’ to the active groups on the complex biological molecules such as receptors and enzymes. These molecular interactions are determined by the affinity between functional groups or moieties of drug molecules and active sites of biological molecules. Here, the functional groups of drug molecules are called ‘ligands’, and the biological molecules are called ‘targets’. Ligand-target interaction is  determined by a peculiar ‘key-lock’ relationship due to complementary configurational affinities.

It is to be specifically noted that same functional group will undergo the same or similar chemical reactions regardless of the size or configuration of of the molecule it is a part of. However, its relative reactivity can be modified by nearby functional groups known as facilitating groups. That means, different types of drug molecules or pathogenic molecules having same functional groups and facilitating groups can bind to same biological molecules, and produce similar molecular inhibitions and symptoms. Homeopathic principle of ‘similimum’ is well explained by this understanding. If a drug molecule can produce symptoms similar to symptoms of a particular disease, it means that the drug molecules and disease-causing molecules have same functional groups on them, by which they bind to same biological molecules. Obviously, similarity of symptoms means similarity of functional groups of pathogenic molecules and drug molecules. To be similimum, the whole molecules need not be similar, but similarity of functional groups is enough.

Potentized drugs would contain the molecular imprints of drug molecules, along with molecular imprints of their functional groups. These molecular imprints will have specific configurational affinity towards any molecule having same functional groups, and can bind and deactivate them.

According to the scientific definition proposed by Dialectical Homeopathy, ‘Similia Similibus Curentur’ means:

“If a drug substance in crude form is capable of producing certain groups of symptoms in a healthy human organism, that drug substance in potentized form can cure diseases having similar symptoms”.

Potentization is explained in terms of molecular imprinting. As per this concept, potentized drugs contains diverse types of molecular imprints representing diverse types of constituent molecules contained in the drug substances used for potentization.

In other words, “potentized drugs can cure diseases having symptoms similar to those produced by that drug in healthy organism if applied in crude forms”.

Homeopathy is based on the therapeutic principle of ‘similia similibus curentur’, which scientifically means “endogenous or exogenous pathogenic molecules that cause diseases by binding to the biological molecules can be entrapped and removed using molecular imprints of drug molecules which in molecular form can bind to the same biological molecules, utilizing the complementary configurational affinity between molecular imprints and pathogenic molecules”.

So far, we understood ‘Similia Similibus Curentur’ as ‘similarity of symptoms produced by drugs as well as diseases’. According to modern scientific understanding, we can explain it as ‘similarity of molecular errors produced by drug molecules and pathogenic molecules’ in the organism.

To be more exact, that means ‘similarity of molecular configurations of pathogenic molecules and drug molecules’. Potentized drugs contains ‘molecular imprints’ of constituent molecules of drug used for potentization. ‘Molecular imprints’ are three-dimensional negatives of molecules, and hence they would have a peculiar affinity towards those molecules, due to their complementary configuration. ‘Molecular imprints’ would show this complementary affinity not only towards the molecules used for imprinting, but also towards all molecules that have configurations similar to those molecules. Homeopathy utilizes this phenomenon, and uses molecular imprints of drug molecules to bind and entrap pathogenic molecules having configurations similar to them. Similarity of configurations of drug molecules and pathogenic molecules are identified by evaluating the ‘similarity of symptoms’ they produce in organism during drug proving and disease. This realization is the the basis of scientific understanding of homeopathy I propose.

To be ‘similar’ does not mean pathological molecule and drug molecules should  be similar in their ‘whole’ molecular structure. To bind to same targets, similarity of ‘functional groups’ or even a ‘moeity’ is enough. If the adjacent groups that facilitate binding with targets are also same, similarity becomes more perfect. If a drug molecule could produce symptoms similar to a disease, that means the drug molecules contains some functional groups simialr to those of pathogenic molecules that caused the disease. By virtue of these similar functional groups, both pathogenic molecules and drug molecules could bind to same biological targets, producing similar molecular errors and symptoms in the organism.

Molecular imprints of similar functional groups will also be similar. As such, potentized forms of a drug substance can bind and deactivate the pathogenic molecules having similar functional groups. This is the real molecular mechanism of ‘similia similibus curentur’.

Except those substances of simple chemical formula belonging to mineral groups, most of the pathogenic agents as well as drug substances consist of complex organic molecules. In the study of chemical interactions involving these organic molecules, understanding the concept of ‘functional groups’ is very important.  ‘Functional groups’ are specific groups of atoms within large organic molecules that are responsible for their characteristic chemical reactions.  Different organic molecules having same functional group will undergo the same or similar chemical reactions regardless of the size of the molecule it is a part of.  However, its relative reactivity can be modified or influenced to an extent by nearby functional groups.

Even though the word moiety is often used synonymously to “functional group”, according to the IUPAC definition,a moiety is a part of a molecule that may include either whole functional groups or a parts of functional groups as substructures.

The atoms of functional groups are linked to each other and to the rest of the molecule by covalent bonds. When the group of covalently bound atoms bears a net charge, the group is referred to more properly as a polyatomic ion or a complex ion. Any subgroup of atoms of a compound also may be called a radical, and if a covalent bond is broken homolytically, the resulting fragment radicals are referred as free radicals.

Organic reactions are facilitated and controlled by the functional groups of the reactants.

A ‘moeity’ represents discrete non-bonded components. Thus, Na2SO4 would contain 3 moieties (2 Na+ and one SO42-). A “chemical formula moiety” is defined as “formula with each discrete bonded residue or ion shown as a separate moiety”.

We should learn different types of ‘functional groups’ and ‘moieties’ of constituent molecules of our drug substances, as well as diverse types of pathogenic molecules. We have to study our materia medica from this viewpoint, comparing symptoms of different drug molecules having same functional moieties.  Then we can logically  explain the phenomenon of ‘drug relationships’. We can explain the similarity of drugs belonging to different groups such as ‘calcarea’, ‘merc’, ‘kali’, ‘acid’, ‘sulph’, ‘mur’ etc. Such an approach will make our understanding of homeopathy more scientific and accurate.

Learn ‘Functional Groups’ from Wikipedia:

The following is a list of common functional groups. In the formulas, the symbols R and R’ usually denote an attached hydrogen, or a hydrocarbon side chain of any length, but may sometimes refer to any group of atoms.

Functional Groups containing Hydrocarbons

Functional groups, called hydrocarbyls, that contain only carbon and hydrogen, but vary in the number and order of π bonds. Each one differs in type (and scope) of reactivity.

Chemical class

Group

Formula

Structural Formula

Prefix

Suffix

Example

Alkane

Alkyl

RH

alkyl-

-ane

Ethane

Alkene

Alkenyl

R2C=CR2

alkenyl-

-ene

Ethylene
(Ethene)

Alkyne

Alkynyl

RC≡CR’

alkynyl-

-yne

Acetylene
(Ethyne)

Benzene derivative

Phenyl

RC6H5
RPh

phenyl-

-benzene

Cumene
(2-phenylpropane)

Toluene derivative

Benzyl

RCH2C6H5
RBn

benzyl-

1-(substituent)toluene

Benzyl bromide
(α-Bromotoluene)

There are also a large number of branched or ring alkanes that have specific names, e.g., tert-butyl, bornyl, cyclohexyl, etc.

Hydrocarbons may form charged structures: positively charged carbocations or negative carbanions. Carbocations are often named -um. Examples are tropylium and triphenylmethyl cations and the cyclopentadienyl anion.

Functional Groups containing halogens

Haloalkanes are a class of molecule that is defined by a carbon-halogen bond. This bond can be relatively weak (in the case of an iodoalkane) or quite stable (as in the case of a fluoroalkane). In general, with the exception of fluorinated compounds, haloalkanes readily undergo nucleophilic substitution reactions or elimination reactions. The substitution on the carbon, the acidity of an adjacent proton, the solvent conditions, etc. all can influence the outcome of the reactivity.

Chemical class

Group

Formula

Structural Formula

Prefix

Suffix

Example

haloalkane

halo

RX

halo-

alkyl halide

Chloroethane
(Ethyl chloride)

fluoroalkane

fluoro

RF

fluoro-

alkyl fluoride

Fluoromethane
(Methyl fluoride)

chloroalkane

chloro

RCl

chloro-

alkyl chloride

Chloromethane
(Methyl chloride)

bromoalkane

bromo

RBr

bromo-

alkyl bromide

Bromomethane
(Methyl bromide)

iodoalkane

iodo

RI

iodo-

alkyl iodide

Iodomethane
(Methyl iodide)

Functional Groups containing oxygen

Compounds that contain C-O bonds each possess differing reactivity based upon the location and hybridization of the C-O bond, owing to the electron-withdrawing effect of sp hybridized oxygen (carbonyl groups) and the donating effects of sp2 hybridized oxygen (alcohol groups).

Chemical class

Group

Formula

Structural Formula

Prefix

Suffix

Example

Alcohol

Hydroxyl

ROH

hydroxy-

-ol

Methanol

Ketone

Carbonyl

RCOR’

-oyl- (-COR’)
or
oxo- (=O)

-one

Butanone
(Methyl ethyl ketone

Aldehyde

Aldehyde

RCHO

formyl- (-COH)
or
oxo- (=O)

-al

Ethanal
(Acetaldehyde)

Acyl halide

Haloformyl

RCOX

carbonofluoridoyl-
carbonochloridoyl-
carbonobromidoyl-
carbonoiodidoyl-

-oyl halide

Acetyl chloride
(Ethanoyl chloride)

Carbonate

Carbonate ester

ROCOOR

(alkoxycarbonyl)oxy-

alkyl carbonate

Triphosgene
(Di(trichloromethyl) carbonate)

Carboxylate

Carboxylate

RCOO

carboxy-

-oate

Sodium acetate
(Sodium ethanoate)

Carboxylic acid

Carboxyl

RCOOH

carboxy-

-oic acid

Acetic acid
(Ethanoic acid)

Ester

Ester

RCOOR’

alkanoyloxy-
or
alkoxycarbonyl

alkyl alkanoate

Ethyl butyrate
(Ethyl butanoate)

Hydroperoxide

Hydroperoxy

ROOH

hydroperoxy-

alkylhydroperoxide

Methyl ethyl ketone peroxide

Peroxide

Peroxy

ROOR

peroxy-

alkyl peroxide

Di-tert-butyl peroxide

Ether

Ether

ROR’

alkoxy-

alkyl ether

Diethyl ether
(Ethoxyethane)

Hemiacetal

Hemiacetal

RCH(OR’)(OH)

alkoxy -ol

-al alkylhemiacetal

Hemiketal

Hemiketal

RC(ORʺ)(OH)R’

alkoxy -ol

-one alkylhemiketal

Acetal

Acetal

RCH(OR’)(OR”)

dialkoxy-

-al dialkyl acetal

Ketal (orAcetal)

Ketal (orAcetal)

RC(ORʺ)(OR‴)R’

dialkoxy-

-one dialkyl ketal

Orthoester

Orthoester

RC(OR’)(ORʺ)(OR‴)

trialkoxy-

Orthocarbonate ester

Orthocarbonate ester

C(OR)(OR’)(ORʺ)(OR″)

tetralkoxy-

tetraalkylorthocarbonate

Functional Groups containing nitrogen

Compounds that contain nitrogen in this category may contain C-O bonds, such as in the case of amides.

Chemical class

Group

Formula

Structural Formula

Prefix

Suffix

Example

Amide

Carboxamide

RCONR2

carboxamido-
or
carbamoyl-

-amide

Acetamide
(Ethanamide)

Amines

Primary amine

RNH2

amino-

-amine

Methylamine
(Methanamine)

Secondary amine

R2NH

amino-

-amine

Dimethylamine

Tertiary amine

R3N

amino-

-amine

Trimethylamine

4° ammonium ion

R4N+

ammonio-

-ammonium

Choline

Imine

Primary ketimine

RC(=NH)R’

imino-

-imine

Secondary ketimine

RC(=NR)R’

imino-

-imine

Primary aldimine

RC(=NH)H

imino-

-imine

Secondary aldimine

RC(=NR’)H

imino-

-imine

Imide

Imide

(RCO)2NR’

imido-

-imide

Azide

Azide

RN3

azido-

alkyl azide

Phenyl azide (Azidobenzene)

Azo compound

Azo
(Diimide)

RN2R’

azo-

-diazene

Methyl orange
(p-dimethylamino-azobenzenesulfonic acid)

Cyanates

Cyanate

ROCN

cyanato-

alkyl cyanate

Methyl cyanate

Isocyanate

RNCO

isocyanato-

alkyl isocyanate

Methyl isocyanate

Nitrate

Nitrate

RONO2

nitrooxy-, nitroxy-

alkyl nitrate

Amyl nitrate
(1-nitrooxypentane)

Nitrile

Nitrile

RCN

cyano-

alkanenitrile
alkyl cyanide

Benzonitrile
(Phenyl cyanide)

Isonitrile

RNC

isocyano-

alkaneisonitrile
alkyl isocyanide

Methyl isocyanide

Nitrite

Nitrosooxy

RONO

nitrosooxy-

alkyl nitrite

Isoamyl nitrite
(3-methyl-1-nitrosooxybutane)

Nitro compound

Nitro

RNO2

nitro-

Nitromethane

Nitroso compound

Nitroso

RNO

nitroso-

Nitrosobenzene

Pyridine derivative

Pyridyl

RC5H4N

4-pyridyl
(pyridin-4-yl)

3-pyridyl
(pyridin-3-yl)

2-pyridyl
(pyridin-2-yl)

-pyridine

Nicotine

Functional Groups containing sulphur

Compounds that contain sulfur exhibit unique chemistry due to their ability to form more bonds than oxygen, their lighter analogue on the periodic table. Substitutive nomenclature (marked as prefix in table) is preferred over functional class nomenclature (marked as suffix in table) for sulfides, disulfides, sulfoxides and sulfones.

Chemical class

Group

Formula

Structural Formula

Prefix

Suffix

Example

Thiol

Sulfhydryl

RSH

sulfanyl-
(-SH)

thiol

Ethanethiol

Sulfide
(Thioether)

Sulfide

RSR’

substituent sulfanyl-
(-SR’)

di(substituentsulfide

(Methylsulfanyl)methane (prefix) or
Dimethyl sulfide (suffix)

Disulfide

Disulfide

RSSR’

substituent disulfanyl-
(-SSR’)

di(substituentdisulfide

(Methyldisulfanyl)methane (prefix) or
Dimethyl disulfide (suffix)

Sulfoxide

Sulfinyl

RSOR’

-sulfinyl-
(-SOR’)

di(substituentsulfoxide

(Methanesulfinyl)methane (prefix) or
Dimethyl sulfoxide (suffix)

Sulfone

Sulfonyl

RSO2R’

-sulfonyl-
(-SO2R’)

di(substituentsulfone

(Methanesulfonyl)methane (prefix) or
Dimethyl sulfone (suffix)

Sulfinic acid

Sulfino

RSO2H

sulfino-
(-SO2H)

sulfinic acid

2-Aminoethanesulfinic acid

Sulfonic acid

Sulfo

RSO3H

sulfo-
(-SO3H)

sulfonic acid

Benzenesulfonic acid

Thiocyanate

Thiocyanate

RSCN

thiocyanato-
(-SCN)

substituent thiocyanate

Phenyl thiocyanate

Isothiocyanate

RNCS

isothiocyanato-
(-NCS)

substituent isothiocyanate

Allyl isothiocyanate

Thione

Carbonothioyl

RCSR’

-thioyl-
(-CSR’)
or
sulfanylidene-
(=S)

thione

Diphenylmethanethione
(Thiobenzophenone)

Thial

Carbonothioyl

RCSH

methanethioyl-
(-CSH)
or
sulfanylidene-
(=S)

thial

Groups containing phosphorus

Compounds that contain phosphorus exhibit unique chemistry due to their ability to form more bonds than nitrogen, their lighter analogues on the periodic table.

Chemical class

Group

Formula

Structural Formula

Prefix

Suffix

Example

Phosphine
(Phosphane)

Phosphino

R3P

phosphanyl-

-phosphane

Methylpropylphosphane

Phosphonic acid

Phosphono

RP(=O)(OH)2

phosphono-

substituent phosphonic acid

Benzylphosphonic acid

Phosphate

Phosphate

ROP(=O)(OH)2

phosphonooxy-
or
O-phosphono- (phospho-)

substituent phosphate

Glyceraldehyde 3-phosphate (suffix)

O-Phosphonocholine (prefix)
(Phosphocholine)

Phosphodiester

Phosphate

HOPO(OR)2

[(alkoxy)hydroxyphosphoryl]oxy-
or
O-[(alkoxy)hydroxyphosphoryl]-

di(substituent) hydrogen phosphate
or
phosphoric acid di(substituentester

DNA

O‑[(2‑Guanidinoethoxy)hydroxyphosphoryl]‑l‑serine (prefix)
(Lombricine)

Advertisements

2 Comments

  1. Chandran Nambiar

    Calcarea Carb has a ‘calcium moiety’ and a ‘carbonate’ moiety’. During drug proving, ‘calcarea moiety’ binds to active groups of certain biological molecules having configurational affinity, and produce some symptoms. ‘Carbonate’ moiety binds to certain other biological molecules having configurational affinity and produce another group of symptoms. Actually, symptoms of Calcarea Carb we get from provings consist of different groups of symptoms produced by ‘calcarea moiety’ and ‘carbonate’ moiety separately. All drug substances having ‘calcarea moiety’ will have some groups of similar symptoms. Same way, all drugs having ‘carbonate’ moiety will have another set of similar symptoms. We can see, Kali carb, Natrum carb, Calcarea carb, baryta carb and such other ‘carbonate’ drugs have many common symptoms that could be attributed to ‘carbonate moiety’ in those drugs. Calcarea carb, calcarea phos, calcare sulph and other ‘calcarea’ drugs also have some similar symptoms that are produced by ‘calcium’ moiety in them. All ‘kali’ drugs have some similar characteristics. Studying our drugs and their materia medica will be a very productive exercise.

  2. A homoeopath

    Wonderful to see your writings . Congratulations to you for understanding the limited action of homeopathy (Below the rate of biological gymnastics or which will be known as equal to placebo effect that is below 35% percent of efficacy) in an unlimited way. The previous writing will make us understand the similarity of drug action hence this write up. Though out of context I would like to mention the fallowing.
    Very good, you are making homeopaths to remember the fundamental subjects which they read in the curriculum but forget that they red and the other type of homeopaths to know that subjects such as molecular biology is connected with medicine. The lack of fundamental knowledge in fundamental subject making homeopaths to escape from scientific thinking and making them rigid and ignorant by which they have been isolated and criticized by scientific community. The lack of knowledge is making them to be fooled by various unscientific theories such as predictive homeopathy. Most of the homeopaths do not know that a subject called Embryonic physiology is present in the medical field. The lack of knowledge of embryonic physiology and copy material from embryonic physiology is making them to believe and feel that predictive homeopathy came from heaven.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: